Homoclinic Bifurcations for the Hénon Map
نویسنده
چکیده
Chaotic dynamics can be effectively studied by continuation from an anti-integrable limit. We use this limit to assign global symbols to orbits and use continuation from the limit to study their bifurcations. We find a bound on the parameter range for which the Hénon map exhibits a complete binary horseshoe as well as a subshift of finite type. We classify homoclinic bifurcations, and study those for the area preserving case in detail. Simple forcing relations between homoclinic orbits are established. We show that a symmetry of the map gives rise to constraints on certain sequences of homoclinic bifurcations. Our numerical studies also identify the bifurcations that bound intervals on which the topological entropy is apparently constant. AMS classification scheme numbers: 58F05, 58F03, 58C15
منابع مشابه
Order of Appearance of Homoclinic Points for the Hénon Map
For the areaand orientation-preserving Hénon map,1) we previously derived a generalized dynamical ordering of the symmetric periodic orbits appearing through saddle-node bifurcations.2) The procedure consists of, first, fixing the homoclinic tangency of the stable and unstable manifolds of a saddle fixed point and, then, deriving dynamical order relations for the symmetric periodic orbits assoc...
متن کاملHomoclinic Bifurcations for the H Enon Map
Chaotic dynamics can be eeectively studied by continuation from an anti-integrable limit. We use this limit to assign global symbols to orbits and use continuation from the limit to study their bifurcations. We nd a bound on the parameter range for which the H enon map exhibits a complete binary horseshoe as well as a subshift of nite type. We classify homoclinic bifurcations, and study those f...
متن کاملGeneralized Hénon Map and Bifurcations of Homoclinic Tangencies
Abstract. We study two-parameter bifurcation diagrams of the generalized Hénon map (GHM), that is known to describe dynamics of iterated maps near homoclinic and heteroclinic tangencies. We prove the nondegeneracy of codim 2 bifurcations of fixed points of GHM analytically and compute its various global and local bifurcation curves numerically. Special attention is given to the interpretation o...
متن کاملHomoclinic Bifurcations for the H
Chaotic dynamics can be eeectively studied by continuation from an anti-integrable limit. We use this limit to assign global symbols to orbits and use continuation from the limit to study their bifurcations. We nd a bound on the parameter range for which the H enon map exhibits a complete binary horseshoe as well as a subshift of nite type, and study these numerically. We classify homoclinic bi...
متن کاملContact Bifurcations in Two-Dimensional Endomorphisms Related with Homoclinic or Heteroclinc Orbits
In this paper we show the homoclinic bifurcations which are involved in some contact bifurcations of basins of attraction in noninvertible two-dimensional map. That is, we are interested in the link between contact bifurcations of a chaotic area and homoclinic bifurcations of a saddle point or of an expanding fixed point located on the boundary of the basin of attraction of the chaotic area. We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999